
Ep 124 \131

AUTHOR,
AOTITLE

,t(.

A. INSTITUTION

'SPONS AGENCY

11 PUB' DATE
GRANT
NeE
AVT1LABLE FROM

EDRS PRICE:*
- DESCitIPTONS

IDENTIFIERS

'ABSTRACT

DOCUMENT RESDNE.

IR .00 '519

Avne* Elaine
PLATO User's Memo, NmmVer Two: Basic' Bit'
Second Editifm. %

Illinois Univ., Urbana.,Computer-Based Ed
Lab. . '

Illinois pnivr., Urbana.; National Science
W shington, D.c.
O t 75.
US. SF-C-723
-31p.
PLATO Fublications, Computer-based Educat
Laboratory; 252 Engineering Research Labo
University .of Illinois, Urbana; Illinois
($1.15, prepayment required)

MF-$0.83 HC-$2.06 Plus Postage. ,

*Computer,Assisted Instrhction; *Computer Scl4nce4.
Compute; Storage Devices; Higher Educatio Manuals;
*Programing
Bit Manipulation; Data Sto;age; PLATO. I9; ?rogramied
Ldgid for Automated Teaching Operations

perations.

cation

Founda-Uón

.

on$1104arch
atort,
1801

To help the PLATO computer-based instruction System
user achieVe.,the most efficient storage and manipulation of data,
this mail al begins with a review of .the structur of decimal, binary,
and octa number systems, ,and methods for conver%Ing from one system
to anot r. The text describes the four basic op, rations that' PLATO
employs.to manipulate bits of data%Ishifiting, ma k, union, and diffY
and how these operations can be used to: (1) stope data in an integer
variable using shifting and masking; (2) pack aid recovdr tt .

information; a/nd (3) store data in a variable u ing segment. 'other
methods of bit manipulation are described, and n appendix provides
tables of number system conversions interns keycodes. (ENG)

****************.****************************
* ,Documents acquired by ERIC include man
* materials not available from other, sources
* to obtain the best copy available. Beverth
* reproducibility are often encountered and
* of the microfiche and hardcopy reproducti
* viethe ERIC Document Reproduation Servic
* responsible for the ,quality of the origin
* supplied by BURS are the best that can be
**

informal unpublished *
ERIC makes every effort A
less, items of marginal *
his 'affects the quality *

ns E IC mak'es available ' *

(ED S) . EDRS is
°it

not' *
I d meat Reproductions *
made from he okigiial. *
*********** ****************

PLATO USER'S MEM

BIC

(

4}r- /

BIT41/P,ERAT,IpNS

Elaine Avner

October 1975

t-

Numbei .2

.SeconclEctition

t
r

EDUCATION A WELFARE
NATIONAL INSTITUTE OF

EDUCATION

IT HIS OW OMFN1 HAS BEEN PEPPO
O (FU E ear TL Y:.AS PI CE VFD FROM
THE PERSON -(1P CIPGAN,/A4,0N OPiC.IN-
144.NO POINTS OF vE id OP OPINIONS
STATED 00 NOT NECFSSAPL PEPPE-
SIN OFF IcAL NAT.OMAL NSTI TUT E OF
EDUCATION PO.SI ON OR POLICY

Reseakch Laboratory..

1

Ir

!

0

A

1

PERMISSION TO REPRODUCE THIS COPY.
RIGHTED MATERIAL HAS BEEN GRANTED GY

eb.. It: V

TO ERIC AND ORGANIZATIONS OPERATING
UNDER AGREEME,NTS WITH THE NATIONAL IN-

STITUTE OF EllUCATION FURTHER REPRO.

DUCTION OUTSIDE THE ERIC SYSTEM RE
QUIRES PERMISSION OF THE COPYRIGHT

OWNER

Copyright 0 October 1975

by Board of-Trustees,
(University of tIllinois

- '

First Edition October 1974
Second-Edition Octobeitb1b75

2

All rights rpservad. No part of this book maybe
reproduced in any form or by any means without per-'.
mission in writing from the autho.,

-

, do

t", 4

t .

ihis manuscript sat, prepdred with partial sup ort4
from, the National Science Foundation 9JSNSF C 723)
Ind the University of Illinois at Urbana-Champaign,-

/

0

/1.

`

Acknowledgment

I wish to-thank Bruce Sherwood,,James Ghesquiere, and William

Golden for comments.' Users of earlier versions of this note also

made helpful suggestions. William Golden racommended distributing

1,

4a.
1

it'as -a PLATO User'ii Memo.

Sheila,Knisley did the grueling job of-typing the manuscript,

and Roy Lipichutz did the drafing work.

'

0

g

Table of Contents

Page

I. Inttoduction 1

II. Number systems 1

Decimal number system 1

Binary number system 1

Octal number system 2

III. COnversion from One system to anbther 2

Binary to (3663:mai 2

Octal to decimal . 2

Decimal to binary. 2

Decimal to, octal. 3

Binary to octal. . .
3

Obtal to binary' A .4

. Bit operations on PLATO ,4

Shifting bite within a variable v .5

Mask 6

0pion , , 7

Diff 8

Combination of operations 9

V. Applications 9

Storing data in an integer variable using
shifting and masking

v9Packing and recovering the information 10

Storing data in a variable using oegment 11

VI. Other methods of bit and character manipulation f6

-pack-
-move-
-itoa- !

.

17

17
18,

-search- . , 18

-find- 20

-findall- w '21

.System functions and systbp variables ..22

Appendix A. Decimal, Octal, and Binary Numberd
from 0 to 69

10
24

Appendix Powers of 25

Appendix C. Internal keycodes 26

- 4

I. Introduction

Authors often need to store large amounts of information. Use of a

single.yariable.for each piece of information would be wastefulrthe infor-.

. /

mation can be packed into fewer Variables and retrieved'when needed. Some -/

,

.

times a thimple-yes.r no or onoL off or 1 - 0 is all the information desire

We shall ooncentrate oh.packing somewhat. more complicated information int

an: nteger variable (n -variable) .since the bit operationsadescribed are /

usually valid only.for integer variables..

Before we discuss bits and bit, operations, let us review the three basic N.,.

number systems we encounter in cork .with computer(: decimal, binary, and

octalf. We shall be concerned with expressing integers in these threq systems

and in converting numbers from one clot= tO another. Authors who wish to

proceed directly to a discussion of "segment" may turn to pa6p11.

II. Number systems

-.Decimal number system. The number system in everyday use i based on

powers of 10. The number 3842, for example,, is actually 3000+80 +40+2, or

1 I)'3x10.34-8x102 +4x10.+2x1016. The decimal (base) system has 10 ay 10, 0

through9. The next integer beyond 9=9x100 6310, 99=9x101+9x10° Or 9999x102+

1

gx101 +gx10 , etc.) is 000 (or 1x10
2

or 1x10
3

etc.). When all digits con-

tain the highest symbol (9), integers start over again /ith the symbol "1"

with an inCreaseof 1 in the highect,power of 1$. With these' fiZdamental

ideas of 'the maximum permitted symbol in the-number system and of writing

numbers in terms of powers of the base, we can use other number systems to ,

represent any quantity. To avoid confutdon, we shall indicpt the bash of

a given number as a' subscript; we .writs 101/
10

for 101 in base 10 or decimal!,
6

,

for 1012 for 101,in base 2 or binary; and 1018 for 101 in base, 8 or octal.

Binary number system.. The binary system' (base 2) is especially con -

vbnient for computers. TLere are only two s 10, 0 and 1. (These may be

considered off-- on switches.) Each binary

1001111 means

-
a

digit is a bit. The number

1X26 + 0x25 + 0)(2
4

+ 1x23 + 1 + 1X2
1
+ 1x20 .

0,0

or

;,.

In terms of the more familiar de

1x64.+ 0k + 0x16 +1x8 + 1

64 +r74 + 2 + 1 =-1. 79 /

_ f.
,

.

10')

Another Way df making.thib 1St statement is 1001111
2

= 7910.
. ,

r

v ,

Octal n r system.' The octar:sYstem (base 8)-,used eight symbols,

2 4. 0

,

ystem, this number is

x2 Tx1

'through 7. The octal number 43758 represents

3 . 2 1

4x8 + 3x8 + 7x8 + 5x80,

or, in terms of. the decimal sybtem,

4x512 +.3x64 + 7x8' + '5x1,

2048 + 192 + 56 + 5 2301
1

,

0
or

2301110

111. Conversion from one system to another

Binary to decimal. We 'lice the power method lust dOcribed.

1011'1
2
= 1x2

4
+ 0x2

3
+ 1x2

2
+ 1x21 + 140

.

1x16 + OK8 + 1x4 + 1x2 + 1x1

101112 ='23
10

Octal to decimal. Use the power method.

324 tm 3)(B2 + 2x8
1.
+ 4x80 .

8 4.1

..

a 3x64 2x8 + 4x1

3248 in ?1210

Decimal to binary., For small decimal integers,coriVer ion to binary can

carried-outbe carried-out by inspection, using the reverse of the pr cedure above. Any
t

decimal integer can be broken down into the sum of power of 2. (Appendix B.

59
contains a table of powers of 2 up to 2 .) For exampl :

4710r3 32 + 8 + 4 + 2 + 1
5 3 2 i 0

2 + 2 + 2 + 2 + 2

1x2 5 + +-1x2
3

+ tx 2 + x2 1x°4

;471 101111

This rocedure becomes' tedious for conversion of large decimal integers.

Another tholoof cdnversion from decimal binary requires only successive

.division of the decimal. integer by 2 'and recording of the remainder (which

is either'O'or 1), Remainder after the first division by 2 is the lowest

bit,(right-mpst bit); remainder after division of the quotient. by 2 is the

next higher bit, and soon. This process is,continued until the quotient

is 0.

4 For example, convert 53
10

to binary notation.

53 2 = 26, remainder 1 1
C441/

' .26 2 =X13, remainder 0

13 2 6, remainder 1 *1

6= 2 = 3, remainder .0 0

3 Tr 2= 1, remainder' 1 1

1 2 d 0, remainder 1 1

Thus, 53
10

= 110101
2

Decimal to octod. The methods given decithal to binary conversion
-- -7

also apply here. Except for Very small decithal integers, the powers of 8

method is cumbersome. We use the Method of dividing successively by 8.

For example, convert 439 to'octal notation.
r ,

10.

43198 = 54, remainder 7 7

54 8 = 6, remainder 6 6

= .0, remainder *6

.66

Thus, 439 = 667
10 s'

Binary to octal. W arrange the binary number in groups of'3 bits each',

with the right-most bit. In each group die give:the bit position its

'binary value:. 2
1

or 2°.(or 4, 20 or 1). If all bits' in a group are

set (i:e., =1), then the value of the group is 7; if none are Get, the value

of the group .J.y 0. The value of the triplet is between $ and 7, exactly:the

_range of symbols'in the octal system. When all groups +aye been evaluated

individually and written sucdessively,.the resulting number isin octal

notation. We bypass the decimal system entirely.

8

4

.1,

For, example, convert 1010110102 to octal notation.

1'01 all 010

1 5 3 2

Thus, 1 101 011 0102. 15328. (Spaces may be embedded within a binary

or octal number.to increase readability. Such °pacer; are ignored during any, ,

computation.)

Octal to,binary; Thiatproceso iu exactly the reverse of the preceding

one.' We take the octal nuMber,and break 0 each oct43 digit into bits. Since1

the greatest octal ligitA.o 7, no more than 3 bits are needed to express one

Octal digit These bits are the A, 2i and 1 bits.
1

For eXtriple, convert 624518 to binary notation.

6 2 4 5, 1 V

110 010 100.101 $$1

Thus, 62451
8

11.0'010 100 101 001
2

.

- ,

Appendix A.' contains a table of decimal,, octal, an binary integer°

from 0 to 691.
10

IV. Bit o er ons on PLATO

'Becaus

notation,

can-be con

writte

o276

of the cempactneoo of the

he PLATO Computer uoeo octa

rted to binary numbers by

itha small "o" preceding it

indicates that this number io

octal,notatign telative to't6 kindry

1 number°. With practice,,. octal numbers

inopection. An octal integer io

to.diotinguiah it froM Ocima integer;.

in octal notation: Each Variable has

60 hito,.00 that an.,octal_number can have up to 20Ai*to. Any preceding

zero° need not .be written; we can write the number dbove ao o27.6.603 rather

than o00000000000000276503.:. However, embedded and following zeroo muot

always be included. ,Bits are numbered from 1 tq 60 otacting at the left end.

Bit 1 is he sign bit; it has value 0 Ipr a poaitivesnumber.and 1 for a

negative number.

Octal representation of a negative number io tht 710 complement

of the representation of tW positive.number; that iG, each octal digit io

subtracted from 7. Suppose the 'number in decimal notation is -22. Octal

representation of +22 is 026.9 octal represegtation.of -22 io, therefore,

o77777777777777777751. Octal representation of 0, (negative zero) is

/

*,
/

- 5 -

/

o77777777777777777777 o .71, ci777777777777777776). and4:o on. Note that

this procedure is equiva ent to finding the f's Complemelt of the 60,-bif

binary representation of the number. For eXample,

22 = o26 = 000 000....01 110
2'

To find the l's comp -1
\ 10
,A'everse the value of each bitl the result is

111 ill...101 001, = o7777\777777'7777777751 = -22
10'

he function "comp(x)",

,performs this operation. The preceding example cou be written: comp(22).

Shifting bits within a variable. Two operat ,.ns allow bits to be moved

within a. variable., Arithmetic right shift (ars) -.ves bits to the right,by

the specified number' of bits.. Bits "falling of the right end of the octal

number are lost:_the'sign bit (0 or 1) is writ in the vacated positions

00 the left end.

Example 1. cp5/10 ars 6 (Shift 6 its to the right.)

Since the shift is.6 bits di 2 triplet groups or 2 octal

ent, we simply

digits, we can find the exult easily.

Result Is'o57. (The 6 bits on the right end are lost.)
1

Ixample 2, , 05710 ars' 8 (Shift 'S bits to the rillt.)

We first write down thd number in binary notation since the

shit is n4,by triplet groups and, therefore,' noeeasily

done by inspectiOn. 57108 1,01 111 001,0002. Wefshift

bits to.tg0 right by ,8 positions and drop the rightmost

bits.

a ,Result is 1 011
2
= 13

8
= o13.

Hence, o5710 ars 8 is o13:

Example 3. o77777777777777772067jars$ 6

o77777777777777777720 (Six bits yachted on the left are

filled with the sign bit, which is 1.)

The second shifting operation is the circular left shift (dc). In

contrast to the right shift, bits here are not lost. Bits falling off the
. .

left end are tacked on to the right end of the Octal numer, so that a bit

may cycle through all poisitions of a variable.

Example 1. o5710 $c1$ 6 (Shift 6 bits to the left.)

Since the shift is through 2 triplet groups,ittierpsult can

be obtained by inspection.

Result is o571000.

10

L

.7

- 6 -

'Example 2.. o5710 cls 8 "(Shift 8 bite°tothe left.)

57108 Jgm 111 001 0002. Shift 6 positiond to the left

and fill in vacated "positiOns on the right with bits pushed

over the'left.en4. (In this case all these bits are.zefoe.)

Result-is 10 111 100 100 000,000 000
2

= 2744000
8
= 02744000.

#

Hence, o5710 cls 8is02744000.

Example 3. 077777777777777772067 $c]s$ 6'.

By%inspection,.result is'o777777i7777777206777..

The 6 bits, pushed off the left side are tacked onto the

right side.9

Examples 4: 077777777777777772067 cls 8

Result is 077777777777775033777.

'04rite.down.the bits, shift, and regro

Example 5,, 012347654000000000000 cls 12

' The shift 'to the left through 4 triplets.

Result i9 0000000000001234.

aM

<

Mask. The mask operations allow only certain bits, to be "seen." The
rr-- 1

. ,

mask is analogous to,the intersection of two sets. In the form

n3' n1 $mask$ n2, bits must be Get (.31) in both n1 and n2 for the corresponding
I

. . . .

bits to be set in n3. There are four possible combinations for* the bits, an

sh9wil in the following ,able.,

n1 p2 n3CWn1 $maGk$ n2

0 0 0
1 0 0
0 1 0
1 1

Example 1. Th'e result of masking the binary number 100 111
2
-with

110 0012Yin 100 0012. In octal.notatiomwe have:

o47 $qaGk$ 061, which results in'o41.

Example 2. Mask 'the binary number 100 1112 with 112; result ic_112.

In octal notation this problem ready

'047 $mack$03, which results in o3.

viP

0D'

ea

r

4

- 7 -

. '

I 1

The mask pan act ash "window" on a variable. When bits are sot in.n2,

the bitsof'nare visible; when bits are not set innt, the windOw is closed

and)bits of n1 are not visible. The masking operation does not chanqe.the
4.

relative positions of bits. -

Example 3. Suppode you wish to see the xight-most 8 b1tS Cbits153through

60) of ,yari4ble Setup a mask in which'Only these bits

are set, i.e., 11 111 111 = o377

Required expression is n1 $mask$. 0371.

Example 4. Suppose in addition to bits 53 through 60 you also wiskto
r-- ,

zee bits-39; 40', 41, 46, 47, and 48., Set up thesmask /.
.

1 10 000 111 000 011 111 1112 = 01607077,

Requ. ed exprlession:in n1 $mask$ 01;6070377. [

Example 5. Suppose you wish to see only bits 39, 40, 41, 46, 47, and 48.

Mask is then 1 00 000 111'000 000 000 0002 016070000.

Required exiiress4on is n1 $mack$ 016070000. .

The TUTOR functions "lmask(x)'" and "rmask(x)" set up special numbers

which may be used in-eit operationsum:Ipe function 1.1mank(48)" gives a left- v.

justified 'Octal 'number of 48 bit that is, the left-Moot 48 bits oethe

number are set. The function "rmask(8)" gives a right-justified number of
. .

1F,41 bite, where the right-moot 8 bits are set. Thuo, example 3 above could

have been written: n1 $mack$ rmask(8).

Union. The union operation is analogous to the union of two sets. In

the form n3a n1 $union$ n2, if a bit is set in either n1 or n2 or tn both,

then the correspondinT'bit is pet in n3. The following table gives the

possible combina1tiono.

n1 . n2 n34= n1 $union$ n2

0 0 0
1 0 1

0 1 1

1 1

Example 1. Find the union of the, bin y numbers 100 1112 and 1 01
2

Result in 110 114 2 In octal notation the problem'reado:

$union$ o61, which results in 067.

Example 2. 'Find the union of 10:1112 with 112 4 4L0111t JO 100 111:2.

(Remember the preceding zeros in the secondvbinary number.,

In octal'notdiion: 047 $union$ o3 results in o47.

12
A

4.

O

The uhfon operatiol is useful irr setting specific bits in a variable

Example 3. Suppose you want to besure that bits 53 through 6g of a

4

Variable,, nli are set, independent of the otherbits...Se
0

. the new value of the variable equal to the. union of the

old value and 11 111 1112 "or o377 (or rmask(8)). .*))

n1 GF n1 $union$ o377 or n1 n1 '$union$ rmask(8) ,
0 .

ExaMple. 4. Variables may also be used in all.bit operations.. For
, .

example, n1-$union$ n4. is a legitiMate expression.
'.

.'..

Diff. In 'the form n3< n1 $diff$ n2,'a. bit is'set,in$h3 only .if'

corresponding bits are setim either n1 or n2 but not in both. If Correspond-

,Mang bits in n1 'and n2 afe.different,. then the corresponding bit is set in n3'...-
,

Az. 7:0 . f

It corresponding'bits. in n1 and n2 are the same, the Corresponding bit is
,,

'..,

not set Win. na'. The possible combinations_.#e 'shown bell*.
o

...- . -...1, #*. u

n1, h2 n34 n1 $diff$. n2 ..- ..

416 .°
1

.. N ' 0 0 0
1 o il 1

1 1 ' '0

. r _

/

As the table'shows, if the bit in n2 ig set, then the corresponding bit
, ..

in 3 is the complement of 'the corresponding ,bit in n1 (set bits are unset

and vice versa),- If the bit in n2 is not get,, the correspbhding bit in n3

is the same as the corresponding bit in n1. .- ..

. ,

. -.

Example .1. Use 'the diff operation oh the binary numbers 100 1112 and

110 0012. Result ig 010 1102. In octal notation the problem

reads:
< 4."

o47 $diff$ o61, which results in o26.

Example °2. Use the diff operation on the binary numbers'100 111 `an

Result is 100 100. (Again, remember the preceding zeros

in the second,binary number.) In octal notation, we have

o47 $diff$'63,- which results in o44,

9

12c:

'03

I

Vie dief operation is useful, in reversing specific bits in 4. variable.

Example 3. SUppose you ,wish to reverse bits: 53 through 60 of variable.
0 .

n1 and get the result to n3.'/Taket:the diff with 11 111 111
2

)D377. (Tha preceding f7 octal zeros will not cause any
/

changes Inthe bits of n1,,,)

n3 Gp n1-$diff$ o377 0jv/n174 n1 $diff$ rm4sk(8)

Example 4.. Reverse bits 53 through-60 and also bits 45, 46, 48j-49, and..

50 of variable. n1 and set the result to n4 You need

1 101 110 011 111 1112= o156377.

n4 n1 $diff$ 0156377

'Combination of operations. Suppose the value of bits 31, 32, 33 and

3,4-of,n1are needed. .°We Must adjust the mask so only these bits come through.

Mask is 1 11 10F 6' 000 00.0400.000 000 000 000 000. Thus n3< n1 $mask;,o740000000.

,We,may also shift the bits,to the Fight end before operating with the mask. ,

"

n4<= (n1 ars-29)$task$ o17

9,
n54* (n1 ars 24)$mask$ o740 (These shirts preserve the

n5

"Y" r --

(nl $c1S$'36)$t4sk$ o74.

original txiplets. Result

for n5 is the same in the

two examples.)

If the.Only information needed is the values of the, bits, the these

operations are adequate. The results for n3, n4, and .115-are not equal, however,

since Oeshifts are of different amounts, and the mask does /hot change the

positionecf the bits. Then
4 .?

. n4 , n3 ars 26 , n5 ars 2 are equivalent;

n3 , n4 cls 26 , n5 cls 24 are equivalent;

n5 , n3 ars 24 , n4 cls 2 are equivalent.

,

V. Applications"...

'Storing data in an integer, variable using ehifting and tasking:
-... -_---, Suppose

Information tofbe stored in an integer variable consists of (in base 41!):

(1) an integer ranging from 0 to' Sp; (2) a fractional number ranging from
.0

/ .

Q A3.0, given to 0.1; (3) an integer ra

.
may- e packed into the variable in any order. Let us consider them in

sequ nce

'(1) 0 to 50 This'number is a positive nteger and

Consider the miXimum_numberaf bits req4ired to-pack it

50107. 628 = 110 0102. This number T.411 re ire no more than 6 bits.

scaling, both for sign and

- 10

ing from -10 to 45. These

requires'no scaling.

into a Variable.

(2) =3.0 to +3.0 This number requires
4

fractional part, since this, method does not provide for storing signed numbers

or, fractions. After additioh of 3.0 to eliminate negative,values and multi-

pkication by .10 to elltinate the, fractional p'art,-tlie maximum value is 60.

6010 = 74
8
= 111 100

2'
The scaled value will require no tore than 6 bits.

The'original value may be recovered in-the.unpacking.

(3) -10 to +5 This number requires scaling to eliminate negative valued.

After addition of 10, the maximum value is 15.

scaled number will reqUire no more than 4 bits.

may be. reco eyed in unpacking..

1510 = 178.= 1 111
2

. This

Again,-the original value_

': Packing and recovering the information. `Suppose

stored in va iables nl, v2,. and n3, and that it is to

cs111,010, for ex ple. The recovered information. will be

earlier as a, \, and c, respectively. The code might

following way:
44

0 <_n1 50, -3.0 v2 5.43.0, 11

C* - .to pack:

define a=v91,b=v92,c=v93

*

' caic

4

n2.10(v2+3)

,n34=13 t:10

n1004= 'r0 (h2 cls 6) + (n3 -cls 12)

n1 in right-most 6 bits; cls n2

6 bits; cle n3 over 12 bits and

to recdVer:

cald a4= n100 Smas10 o77

the infprmation is

be packed into variable

in'variables defined

be writtenin- the

_ n3 +5'

$-$ scale fdr sign and decimal

$$ scale for sign

1

over 6 bits and stbore in next

store in next 4 bits

$S look at right-mast 6.bits

b4= ((n100 ars 6)$mask$

c ((n100 ars 12)$mask
('

)/10 - 3 $$ 'shift, mask, scale

o1/) 011$$ shift, mask, scale

.15

The .last two lines may also be written

04

calc . bd= ((n100 $mask$ o7700)ars.6)/10 3

C<W((1100 -$mask$ o1 70000)ars 12) - 10

To,check that all is working well,, you might add'the following code:

show a

showt' b,5,1 or write 4s,a1> <f(sibp 4s,c>

showt c,5

$$ mask-first

. 4
This procedure becomes economical wh 1 ge4, amounts of data of similar for-

.'
'mats are to be packed into many var les.

.

We shallmdw discuss the probl of packing using the segment feature,
D 1

, .

which performs many..of the operati ns automatically.

.

Storing. data in a leVariab using segment. The segment feature allows
,,.. q .

'44c Isuccessive.vatiables to be broken up into segments or bytes for purposes of

...,,

st *ng data. The author selects a/byte size which willlaccommodte the
,.-

numbers. To use the segment feature, a statement must be added tothe.set
4.i,

1 .

of definitions with the fealowing'formt

define dents "

segment,name=starting variablelnumber of bits per byte,s

*

put no'other definitionz on the same line with segment
definition

last argument, s, is optional, and is needed for'signed
numbers.

The byte size may be from 1 to 59 and cannot be a variable. The,addresS

ok the starting variable also may not be a variable. (The address of the
4

variable is the number attached to'it; e.g., the address of v59 is 59Y

address of'n13 is 13. 'Hence; one may.not use v(v48) in the segment definition.

Unlike the example dis cussed in the preceding sectidn,,v-yariables-or n-
.

variables may be used with the segment feature. 'However, o ly integer data

may be stored. When given, the last argument in the segm e
.

.

r

indicates that storage of negative as well as positive integer's is permitted.

t this argument only positive integers may be peeked correctly. rif,thert-

last arg ent is included, byte size must be increased by.1 to allow One bit

for the sign. The convention for octal representation of negative integers

is then similar to that discussed at the top of page 5.

1.6
7

/

Segmenting starts at the tt end of the variable. :, 1f the 1,te iz
v7z.

does not subdivide the f bits evenly, the e ta bits at the right end
_

of each segmented variable re unused. For example, a variable can contain

seven 8-bit segments with 4 bits left over.

To fit into an unsi ned segient of size nbits, integers may range

from 0 to -1. For a igned segmeni.of size n bits, integers may range

from -(2
n-1

-1), to +(2t -1) . Attempts 'to fit integers outside these ranges

will give erroneous results. Suppose we have a byte size of 7. In:the table

of powers of,2 in AppendieB-, we 'find that such a segment can'stOre positive
.

integers.from 0 to. 127 or signed integers from -63 to:463.

More often u have a batch of Aatawith a known maximum absolute value

, and wish to selec. tale byte size. If this value is-such that

2
n-1 A =.

.maximum 2
n

, thenthe byte size for unsigned integers is n and for.

signed integers, n+1. indicates maitimum absolute .value; i.e.$

Consider only the value and disregard,the sign.) Suppose we want to fit:the

integer 17689 into a segment. We find from Appendix B. that.this'integer

lies between 2
14

and 2 For an unsigned segment the byte size must be at

least 15. For a signed segment we must allow a:ayte size otiat least 16.

the integer is -1768T, the procedure is the same, except that we are
*

restricted to signed segments; the byte size must be at least, 16.
-

Suppose we want to break.up variables into 6-bit bytes-and need 100
/

such byte's. Then 10 variables will' be reguiredl (ten 6-bit bytes per variable).

Suppose also thati'sOme of the to be packed'consistpfntgative number
I

We might store sOme.of'the information as follows:
Z-

define seta
segment,class=v10,6,s

integers from -3,1
10

to +31
10

may:be packed without loss of
.

information

zero vi ,10' $$ lqitialize v10 through v19
calc v1 1.5

r1241= 4

class(1)41= 2 $$ set 1st byte to 2
class(2140 3 $$ set 2nd byte to 3:
class (4) 7 . $$ set 4th byte to etc.
class(20)4= class(1)'+ class (41
class (40) 40 class.(20) + 10

.class(45)44 -8
class (12) n2
class (32) 10v1

M.

-.13

As a check the packed information may be displayed:

spw
showt

Values may

4
write

class(4)
class() /10,4,1

also be displayed by

Qs,Class(4)D is,class(32)/10IP

The Calculatiorm above result

class (2)

n,the folAwing non-zero variables:

v10 is o 02715.'00 07 00 00 00

class (1) class (4_) .

.
vli 1.5 o 00 00 00 00 00 00

class(12)

v13 is o 00 J 7 00 00 00 00 00

00 00 00

00 00 11 (11
8
= 9

10
)

A

Class (2'0)

00 00 23 (178 = 15
1

, 23 = 19
10

-clasS(32) class (40)

s 0 00 op 00 00 67.0 00 00 A 00 (here;

tlasS(45)

67
8
=

preceding.zeros are inclUded only for ease in counting byteg.and need,

not usually be included in writing the octal numbers.

Paging of the negative number slay be analyzed furtber.' Consider only

the relevant byte of V14,

o67 = 678 =-110.111
- 8 2

Since, according to our segment definition; Ileare dealing with a signed

number, the left-most bit is interpreted as the sign bit,AncLsinCe it is 1,

the number ig negative. To obtain this number we take the 1's cOMpleraqntpf

the binary number; we flip thenitsof 110 1112 and obtain 001.0002 = 108 = 810.

The number stored in this bytq4s the nent ilk of this integer, or -810

Consider the example given preViously. Informatton't# be stored consists

of (1 an integer ranging from 0 to 50, represented by n1/ (2) anumber ranging

from 1.3.0 to +3.0; represented by v2; C31-all,integer ran-ing from,a10 to

repregented by n3.

A°) The - integer stored

argument in the,segment must be included to allow for/ negative numbers in th,

other data, an additional bit mustbe used, so the byte size is/7.

in hi requires a maximum of 6 bits. Since the sign

18

-4 e -;`

The number stored in v2 requires scaling for the fractional part but

ndt for the sign as previously. Scaled values range from -30 to 430." Since

304= 368 = 11 1102 and one additional bit must be allowed for the negative

.values-, this byte requires 6 bits.

*e integer stored in h3 does not require scaling for sign as before.
1 .

The largest absolute valuff that must be considered'is1010. Singe
/

10 ' = 12
8
= 01 010

2-
. and -I0 = 10 101

2
here, this byte requires 5 bit. i

For 'simplicity let all three bytes be size 7. Then there are 8 segments/

10 , 10

/
.

!

to a variable,,with 4 bitS/left over at the right end. Suppose the data
\.

are sto\red starting in v100. The Code might be written:

/
.

0 5-n1 4/50; -3.0 5 v2 5 +3.0; -10 5 n3 5+5, *

*
d I

define segs '

segmeni,infq=v100,7,e
* ,

.,
,

calc info(i)<='n1 $$ n1, v2, n3Alave been previously set
, info(2)<= 10v2 $$ scale v2 for fractional part
info(3)4= n3

check values by, displaying:

Show ilio(1)
showt ihfo(2)/10,3,1 $$ scale back
showt l'hfo(3 ,4

Values may also b displayed by

write ls,inf top -4s,info(2)/10)> 4s,info(3))>

Note the difference in location- in. the variable 'from the earlier example;

tlere the inrmation was padked starting at the right end of the variable,

*while with segment the packing starts at the left end.

The same variable(s) can be 'segmented/into bytes of different size.
. e ,

For example supObse three 9-bit bytes'andfour 1-bit bytes are needed. The

/

-define- could be writte as follows:
)

t ,, \.
.

,/. de ine packup ,

.10

segment,numb=v100,9,s
segmeht,onoff=0100,1'
meanhuMb(1),sd=numb(24,coef=numb(3)

proba=onoff(28),Frobb=onoff(29),probc=onoft(30),probd=onoffl31)

. A

'15

O

Note that segmented value- may be referenced in subsequent defined

variables. Any permutation of the segmented data could have been used. In

using this multiple segment c re must be taken not to overwrite one segment

with another. The three se -nts abov),' "mean," "sd," and "coef," each

require nine bits. Sinoe th y are defined. sequentially, they occupy.bits

1 through 21: Hence in defjning or using. the next group of segmenta,.uproba,"

"probb," "probc," and "pro we must not use any of these first 27 bits;

the first bit available is number 28.

Segment feature:dividesauccessive variables'into.segMente starting,-

at the left end of the first variable and- proceeding "horizontally"aceoss

variable The first and second segments, for example, are adjacent 'segments

in the first variable. Another form of segment is the vertical segment, which

behaves exactly as. its name implies. It breaks up successive variables into

segmen sand proceeds "vertically" #cross variables. With vertical segmenting

succe; ive segments are in stitcessive variables; the first and second segments

are in the first and second variables. The format for the definition'/of the
.

vertical :segMent is ,

define defna
'segment,vertical,name=start ng variable,starting bit .

Os
position,number of bits er byte,s

last afgument is neecled onl _if. signed numbers are used

Suppose the fblIowing information is to be stored in vertical-segments

(1) integers which range from 0 to 5x1,1
1
i () integers which range from

-1248 to +892;1 (3)integerS which range from .0 to 135. The byte size, for

a

these values 4e, respectively, 39 bits,'.12 bits, and 8 bits. (R er to the
i i , 0

table in Appendix B ,

The de4nit,:ns for the vertical segments in this e, ple could be

written:

define all ,

eegMent,vertical,big=v22,1,39 -

segment,vertical,neg=v12,40,12,s
segment,vertical,small=v22,52,8

-4"' Suppose the following calculations are.performed:

P

V. Other methods of bit and character mani

- 16-

calc big (1) 1000
big (2) 109
neg(1) 89p
neg (2) -1t00
small (1) 132

small(2) 15

I .

Those segments are allscontained'in variables v22 and v23. The dalcu-
.

/
lations result in the following values for these variables.

v22 is'o0000000001750 1572 410.

0 v23 is o000746545000 5517 036.

Consider v22:

first 39 bits: o1750 = 10001 (which isbig(1)))

next:12 bitse o1572 = : 890
10

(which is neg(1)i-sign bit is 0}
. .

next 8 bits: 0410-6Y841 =.o2$4 = 132
10

(which is small(1); the
. .

shift of 1 bit is helpful in evaluating the `first 8 of the -

remaining 9,bits)

Consider v23: r

first 39 bits: -o7346545000,=,-10
1.4

* iwhich is big(2))
. .

next 1.2.bits: '.G5517.= - (02260)
f!'t:

-120010.(which'is neg.(2)4, sign

bit. is is 1) yq, .,
4 -4.i.

.4
,.?

next 8 bits: of 36ars1 = o17 = 1510 (which is sma 1(2))

Softle TUTOR commands and functions low bit and character manipulation.

"4. These.featuries are eummarized,below.,
/

_'and lessons"aids" provide details a

charicter.4equires 6 btts so that a var,tabie,can contain up to 10,

he TUTOR Language by Bruce Sherwood

exceptions./

/
characters. ApOendixiC. cont ns a table of/ internal keYcodes, numerical

Tepresentations,'Of more C only used characters. In general, usbof the
//

* keycodes in this table ould be restricted to, inspection of the contents of

a variable. Suppos the expressman 5+3=2x4 is stored in v1 with a -storea-
,

command., The o' al reptese ation of vl is o4$453654356437000000. To -

specify cha cters in command tags, write the characters, in single quotes (1)

if char ters are t-justified (stored in the-left end of the-variable) Ir in

.7/7

quotes if characters are right-justified.(stored in the right end

of the va 'able). For example, 'qed' occupies
.

the'first three characters (or
.

,

21

0

- 17 7

the fi t six octal digits or the first 18 bits) of a variable; "qed" occupies

the last ree characters (or the labt six octal digits ff the last 18 bits)

of a variable. In terms of the numerical codes ftom Appendix C., 'qed' is

021050400000040000 and "qed" is 000000000000000210504 or simply 02105;Al.

No.

In the - search - Command (discussed below), it is far easier to interpret

'qed' than 021050400000000000000,although both expressions have, the same

meaning. Use o£. quotes with the characters also avoids the problem of

rewriting if the numerical codes'should be changed, in the futute.

Ih all-commandsibelow involving character manipulatiep, character positions

Ore numbered from the left, i.e., the left-most position is 1; the right-most;

10. ,Except for -find- and -findall-, these commands may useaeither v- or

xi-variables. The -find* and -findall- comm;nd; must use n-IM;iablpe...

4

-pack-. /

This command pack a character string into variable(s) starting at the

left end (Character itiOn 1) of the indicated starting variable ;Any

unused characters to he-right;are filled with octal zeros.
1
)4,

pack v1,sp ing $$ puts'character string.starting An v1

showa vi displays string (up to lecharadkers)

*
e

N

pack, v5,v6,string,

showa v6,v5

$$ putscharacter string startidg in v6
and character count .4n v5

$$ displays string

(When packAng up to 10 characters with the -calc- command,

oalc 4:11) "string" packs the string into the variable atithe right end;

calc .n1 < 'string', packs theotting at the left end. Unused characters

are filled with octal zeros. The --(mimeo- command packs a reopdhoe into the

eft end of-the Variable with octal zeros filling out unused character

positions.)

move-.

Thib command moves characters from one character string to another.
,

move from'atarting variable,from starting position,to starting
variable,to starting position,n0. of,characters (optional)

e.g.,

move v1,7,v8,11,2

22

\.

118

This statement c7.uses 2 characters starting at character position 7 of

the string starting in vi to be moved to position 11 oi-the string starting

in v8, overwriting characters already at that position. If the niuMber of

Fharacters is,om'tted, ii is assumed to be I.

. Another v Op of the -move- command uses a character string as an
.

argument. For example,

move 'plato',4,V8,10

Mo-V4 thVCharacter in position 4 of the string 'p to' (t, code=024) to

position 10 of the string starting in v8. If v8 was previously zeroed,

now has the value o24. More'than one character may be moved. In

move 'plestor,4,v8,8,2

the two characters starting in position 4s(to, code=02417) are moved to

position 8 of v8. If v8 was previously zeroed, it is now o241700.

-itoa-.
I"

-

This command convents an integer to an alphameric string.

itoa variabie.where integer is stored,variable:where alphameric
string is stored (left-justified),variable where number of
characters-is stored (optional) ..4k

e.g.,

talc n1.1= 24680

itoa n1,n6,n5
z

This statement causes the.integer stored in n1, 24680, to be converted to

an alphameriC string which.is stored in n6; n6 An octal format is now

035374143330000000000.. (See Appendix C., internal keycodes.) Since the

third argument is included in this example, n5 contains the number of charac-

ters,.5. If the integer stored in n1 is -24680then n6 contains

046353741433300000000 and n5 contains'6.

. -search-.

;This command scans a character string for A object character string:

The scanned string.is not broken up into words, or variables. The scar can

be considered as "horizontal" across a character string, which may extend

over several variables:

scan

23

IIA

*

(6 4UMents)

'- .19 -

This version of -search- looks fog the first u ence of a, character

string.
.

search object o search (left-justified)aength' of. object-string,

(510 chara ters),starting variable of string to search, -

number of c erecters in string'to seircli,relative character

po'sition at rich to start search,variable "where relative

character posi on of object s ng 's stoked
.11

e.g.,
/

storea v30,jcount $$ student t es: cats * dogs = animals.
/ .

ok , d

search,1=10,00,jcount,lov1

In this exemple'the 'student's response is of length jcount (21%inthis

'Oese,'including embeddediepaces) and. is stored starting at variable' v30,

with 10 characterS per variable. This string is:Aearchell forthe object,

which is of length 1. The search start s at variable v30 at the 'first

character, reltive chareCter position 1. After the search is completed;

the variable v1 'contains 13:since the object string starts at the 13th character

position.

Another eXampie using the same string,b4t with different search parameters

is

search 'Cat',3,v30,jcount,2,0 a

, The search now starts at character position 2. After the search is

completed, v1.-contains -1 since the object string, gat, starts at character
-

position 1-and, was not found.

-search-. ,

A
(7 arguments) 4

)

This version of,- search- looks for the specified number. of occurrences

a character 'string.
o \

,

search object of search - left- justified),length of object string
(510 characters),starting variable of string to search,number
of-characters in string to search,relative character position
at which to start search,variable for storing number of 'times

. .

object string, is found,nuMber of following varirebles for

storing relative positions of object string.

The string in the previous examples, i.e., cats +-abgs animals, is

searched for the character

search 's',1,v30,jcount,1,v1,jcount- will.store all possibl
$$ occurrences 'of objle string

24 . o.

- 20 -

,
0

After the search the following va'ues are 'contained in ariables v1

through v(jcount):

v1 equals 3

v2 " 4

er.of occurrences of objects
P

(relaive character position'pf

1.7'3 11 .(relative character position of

Aiik
v4 " 21 (relative charaCters'Sosition of 3

v5 " -1 (no further .ocoarrendes of objec

-find-.

. This command scans a set of variables for the f rst occurrence Of'an

object bit pattern, Each variable (with or withOht m4skf is compared with

an object bit pattern (with orwithout the same mas it'7The'scan can

considered "vertical," with eacA variablescannal Independently:

/scan n1

/scan p2 e

scan n3

v6 thrbudh v(jcount) are unchanged.,

410

ing)

occurrence):

occurrence)

d oceIgrgnce)

string)

A.

find.

e.g.,.

'find

object bit Pattern,integer Variale at which to stmt sdari5h,
number of variables,inapger variable for relative found
location,incrempt between variables (optiOnaI),mask (optional)

'we',n5,26,n100

This-statement causes a scan Of each off 26 variabl

for the first occurrence of the bit pAternk 'we', whi

Since. the increment between varia es i0 oM tted, it i

mask is omitted the entire varia

5,, If the patte

6 from n5 throligh n30 .

h is 027-napoommono.,
set to 1, aria since the

e is co pared with the entire bit pattern..

is matched,:n100 is set to the relative positiaA

(e.g., to 0 if match is 4n n5, to 2 if 'match is in n7, to 25 if

1110). If no match is found, n100 is alt to

f The bit pattern of interest is not restricted to eingleft-justified

or right.justifiedo Suppose the relevant information s stored-lin segmented

variables in the fourth 12 -bit segment. The variables uld then look like:

XXXXXXXXXXXXQQQQXXXX, where the Q's represent the segm t of interest and the

of the Variable

match'is in

t.

25

-.21 -

9 -

X's can be any value. Suppose, also, that we are noilonger comparing the

entire variable with the entirT object bit pattern so we need the mask.

We could have a statement like

r.)

or

find "weuois12,n5,26,n100,1,077770000.

find "wexx"05,26,n100,1,70000
I

x Can be any ,4-bit character.),' Since a mask is specified, thJ incre-

mentment mut be 4even to a'roid ambiguity.
°

A
°V,pours4:4knumerical bit-pattern is also acceptabieas_an tegument.

'(However, seepage17,and-ApPendix C. for a precaution against use of octal

representationedt keycodes.) For example ,N.

f,n5,26.01100

t1 relative pOsition of the first

bit pattern and which, therefore, A4s all bits,Se to 0, since no inask is
1

used. (Note: The, object bit pattern'tlhould not/be writt4 with quotes,

since"Oimeans the internal code corresponding to thp'character 0,-which

is o13,)

returns

find

whichliMatches the object

1 ""

-findall-.

as

oVa

The -findall- commandlripsAilar to .the -find- c mmand but 'It Picks up.

many,occurrendes.of the object bit patterri as desire - '

.

findall object bit pattern,integer UUriable at which to start search,

number of variables to search,int8ger ya iable where fOUnd

01A

e.g.,

count js stored,number of following var ables where relative

found locations, of pattern are ttored,i crement between

variables (optianal),mask.(optional) /

. Fr

A,./findall 'we',n5;26,n100,6,5

In this example, the scan for the objet bit,pa tern is spbcified only

for every fifth variable: n6, n10, n15, :120, n25, d n30, The number of

found locations desired is six, ,nb that all'possible lociltions will be stored.

Since tht increment is not equal to 1j it must be ecified. *ince the mask

it omitted, the entire variable is compared with the object bit pattern.

26

r,

Suppose vari -s n5, n20 and-n30.contain he object-bit pattern. After

-findall- is ted, the following vales are contained in variables n100

through n106:

-n100 equals 3 , (numbet of curve/ices of object bit pattern)

n101 " 0 (relative sition of 1st occurrence: n5)

15, (relative osition of 2nd occurrepce: n20)

25 . (relativ= position of. 3rd occurrence: p30)

(no fur er occurrences of- object bit pattern)

ed
-

=find 11- a negative increm9nt cause's a backWards

r, relative positiOnjs Stil counted from, the

beloW the

n102

n103

n104 " -1

n105 and n106 are

With both -find- and

pass through the list. Howev

first variable in the list. For example, suppose in the 1

.number 483 is in variables n2, n4, and n5, The forwar&and b

with produsce the found"locations indicated.

find 483,n1,6;n100

forward

_scams n1

scan n2
scan n3'

' scan n4
scan k n5. ,

....

scan n6

n100 is 1 (first occurrence.

in'n2)

bitcnt (x)

find 483,n1,6,n100,71

i scan n1

scan n2'

backward
scan n3
.scanc n4

/ -scan n5

I

' scan n6

n100 4 (firSt-occurience

in n5)1

and scans

.4

The TUTOR function "bitcnt(x)" counts the number of40set to

4. argument. For:example:.

bitcnt(58) = bitdnt(o72) = 4

bitcnt(87)'= bitcntAo127) = 5

bitcnt(132) ,:bitcnt(o20,4) = 2

,Mtcntqo655$mask$o263) = bitcnt(o241)' = 3
v -

bitont(75) = bitcnt(o77777777777777777772) = 58

The argument may be a -Variable.' In most caseSian integerWariale would
A

I E.

n its

be used. for thewarguMent:, For examples.

r

calb n)< 12 ,

frkv10C* bitcnt(n1)
$$ in octal notation 211 is o14-
$$ value of '3710 is 2 1

,0

"

N.* IN,

However,

23-

9

caic v2 12 $$ in octal notation v2 is o1723600000000000000
v11.1= bitcnt(v2) .$$ value of v11 is 9'.

-(5e The TUTOR Language, by Bruce Sherwood, chapter 9 fOr if discussion

of octal representa7tion of .v-variaples.)

coMp(x).
0 .

The function "comp(x)" was mentioned on. page 5. It reverses the value

of the bits in its argument so.that set'bits are unset and vice versa. For.

ex
-

aMple:" "

,
comp(58),= comp(o72) = (3/77777777777717777705 .

comp(-82) = comp(o77777777777777777655) = o122

lmask(x), ask (x)

The fu ctions."1masklx)" and ,"rmaSk(x)" were discussed on page 7.

These functiais establish octal numbers with either.1*7-mos4 or right-
- t)

-most bits set.\ The argument-determines how many bits Ore set., For exaMp et

;4-Ialask48) = o7777777777777737000

"ma sk(4) = o7 77 7 600001400,000041,000 .

rMask(14) = 00000000000000037777

zbpw, zbpc,icpW.

The
//

system variab1p "zbpw" is the number. of bit er TUTOR word (or

variable). It is equal to'60. The syste ariable "zbpc" is the umber of
i. a

bits per character and equals 6. The Sys em variable "zcpw" is the er of

characters per TUTOR ore (or variable) and equals 10:

ti

40,
41"

Ap
These systAmy iables and functions may be combined. For, examp e,

,rma.sk(zbpq)

comp (l sk1 4
zbpc)), and bitcnt(comp(n1)) are ill,legal.

"J

A

k

2 8
rS

/"-

- 24 -

Appendix A.
Ir

Dedimal, Octal, and .from 0 to 69 ,

Decimal Octal .' BinarY 7 Decim -T Octal . Binary

0, 0 0 000 000 35 43 0 100 011
. ..

t 1 0 000 001 - 36. 44 0 100 100
2 2-,' 0 000 010., 37 .45 0 100 101

167.

3 '
' 3 0 000 011 . 38 0 100 110

4 , 4 0 000 100. - , 39 0 100 111.
4,

5 5 0' 000'101 40
,k,

50 05 101 000
6 ' 6 00 000 110 41, 51 0 101 001

Al
7 7 -. 0,000,111 42 3 52 0 101 010

,a.

8 10 ,0 001 000 43 53 0 101 011
9 11 0 001 001 44 54 0 1g1 100

10.' , 12 0 001 010 45, 55 0 101' 101
,-

11 13 0 001 011 46 56 0 10C 110
* 12 14- 0 001. 100 47 57 0 101 111

13. '15 ;0 Op ,101 48 .. 60 0 110 000
14 16 0 001 110' 09' 61 0 114100T

15 17 . 0 001 111 50 " 62 0 1'10 0t0
.16 20 0 010, 000 51 63 0 11 0.11

17 21 : 0 0'0101 52 64 0 11 100
va 22 0 010 010 53.' 6 Ø,110. 101
19 23 0 010 011 54 ,66 '' O. 110 110

20 - 24 0.010 100 55 67 0 110 111
21 A 0 010 101, , 56 70 . 0 111 000 8
22 0 010 11g 57 71 0 111 001

23- 27 0-010,111 ' 58 .72 , 0 111 010
24 30 0 011 000 59 73 0 111 011

. 25 31 0 011 001 60 74 0 111 100
26 32 0 011 010

.i.4
61 75 0 141 101

27 , 33 0 011 011' 62 76 0 111 110
28 34 0 011 100 63 77 . 0 111 111

'29 35 0 011 101 64. 100 1 000000
30 56 0 011 110 , 65 101 ----1400°001

°31 37 0 011 111 66 102 1-14$0 010
32 40 0 100 000 67 10i 1 ', 011
33 41 0 100 001 68 104 .- 1 00% 100
34 ". 42 0 100.010 '69 105 1 000 01

) ' -lb0

2n

0 1

2

2 4

3 8

4 16

5 32

6 064'
128

8 o '256

9 , 512.

1 024,

11. 2 048
12 ,4 096
13 4 192

14' 16 384

15 32768
16 .65 536

-17 131 072
18 262 144

19 * 524 288

20 1 048 576
21 2,097 152

22 a i4 194 304
23 C'd, '8 388 60§
24 16 777 216

25 33 554 432

26 , 67 8 864
27 134 217 728
28 268 435 456

29 536 87O 912

= 80

=8 1

=8

=8 4

.T

25

AppendixB.

Powers of 2('

Given the byte size = n:

n

30'

,31 '

32
33

34

35

37

38

39

'40

41

42
43
44

45
46.

_AT
=8 48

'49 -

50 1

=87 51 .2

52 4

53 9
=88 54 18

55 36

56 72
=8 9 57 144

58

59
.288
576

Given the maximum absolut

2n

,1 073 741 624
4 2.147 483 648..

4 294 967 296.
8 §89.934 592

47 :179.869 184

c34 359 738 368,
681'719 476 736-.

137 438 953 472
274 877 906 944
549 755 813 888

*
1 099 511 627 776
.2 199 023 255 552_
4 398 046 511 104
8 796 093 022 208
17 592 186 044 416

35
70

140
281

562

125

251

503

007
014

184
368
737
474
949

372,088 832
744 177 664
488 355 328
976 710, 656
953.421' 312

897 906. 842 624
799 8i3 685 248
599 62,7 370 496
199 25447A0 992
398 509 481 964.

028 797 018 963 968
057 594 037.927936-
115.188 075 855 872
230 376'151 711 744
460 752- 303 423 48-8

=8 1

1=8 1

12

=8 1 3

_814

-8

1=8 6

17=8

=818

=819

range for unsigned integers is 0 n -1

range for signed integers is -(2
n-1

-l)- to +(2
n1

-1)

value such that 2
n-1

5 ImhximUml < 2n:
. * 0

byte size for unsigned integers is n

byte size for signed integers is n+1

1

- *

$

26-

'Appendix C.

Internal Keycodes

If you wish to e ine and interpret the contents of a variable, some

y

oct,a13,epresentations of interna keycodes are ven here for convenience,

Complete tables are given in "aids. Use of these-codes should be limited

to inspection of variables. In'-search=, for example, use "search J.:Z:4:y."

rather than "search o54000000000000000000,....' and ' "search

rather than "search 030124 00000000000000,..." Not only is the tag easier

to read and interpret, but problems arising from possible future changes

in-the internal codes will be avoided.

shift o70

Micro ,o76

font o75

'superscript o67.

subscript o66 j

-4 locked superscript o7067

locked Subscriptt o7166

space o55.' "&

backOpace (174

0 halfspace. . 07655

half backspace o7674

a 01 A 070,6 fi o33 o51
1

b 002 H" o7,61$2 1 o34) ,4 o52

c o013 C o703 2 o35 [o61

, d o04 D 07;104 3 o36 o62-,

e o o05 E o705 (337 { o766t

f 06 F 0700 5.- o40 } o7662

007 G 07007 ,
6 o41 rt o762$

h o10 H ektd 7 o42 o7617

i - ot1 I- 67011 8 o43. 06701

j o12 J o71612 9 o44 E o7652

k o13 K o7O13 -if o45 .4- o767001

1 -o14 L, 07014 o46 o767004

m o15 M o o7015 o47 . 'o7677

n o16 N o7016 x- o64 1,$ o63

o o17 0 o7$17, / o50 $ o53

p o20 P. o712O o60 o65

'"5 o21 Q o7021 o54 o57

r o22 R o7122 o7654 o56,

4- o23 S o7123 < o72 o7O5O

t o24 , T o7,024 > o73 07057

u p2.5 U o7025 < o7672 o77

v o26 V o7,026 ,a o7673 o7077

027 W o7,027
1 o70111

o30 o7030, o7O56

o31

o2
.Y o7031

2 67032

b7O41

'31

